min2net.model.SpectralSpatialCNN
Table of contents
About SpectralSpatialCNN
If you use the SpectralSpatialCNN model in your research, please cite the following paper:
@ARTICLE{8897723,
author={Kwon, O-Yeon and Lee, Min-Ho and Guan, Cuntai and Lee, Seong-Whan},
journal={IEEE Transactions on Neural Networks and Learning Systems},
title={Subject-Independent Brain–Computer Interfaces Based on Deep Convolutional Neural Networks},
year={2020},
volume={31},
number={10},
pages={3839-3852},
doi={10.1109/TNNLS.2019.2946869}}
SpectralSpatialCNN class
Configures the model for training. Based on tf.keras.Model.
min2net.model.SpectralSpatialCNN()
Arguments:
Arguments | Description | Default |
---|---|---|
input_shape | tuple of integers. (#height, #width, #depth) | (28,28,1) |
num_class | int number of class. | 2 |
loss | str (name of objective function), objective function or tf.keras.losses.Loss instance. | 'sparse_categorical_crossentropy' |
epochs | int number of epochs to train the model. | 200 |
batch_size | int or None . Number of samples per gradient update. | 100 |
optimizer | str (name of optimizer) or optimizer instance . See tf.keras.optimizers. | Adam(beta_1=0.9, beta_2=0.999, epsilon=1e-08) |
lr | float the start learning rate | 1e-5 |
min_lr | float lower bound on the learning rate. See tf.keras.callbacks.ReduceLROnPlateau. | 1e-6 |
factor | float factor by which the learning rate will be reduced. See tf.keras.callbacks.ReduceLROnPlateau. | 0.25 |
patience | int number of epochs with no improvement after which learning rate will be reduced. See tf.keras.callbacks.ReduceLROnPlateau. | 10 |
es_patience | int number of epochs with no improvement after which training will be stopped. See tf.keras.callbacks.EarlyStopping. | 20 |
verbose | 0 or 1 . Verbosity mode. 0 = silent, 1 = progress bar. | 1 |
log_path | str path to save model | ‘logs’ |
model_name | str prefix to save model | ‘SpectralSpatialCNN’ |
**kwargs | Keyword argument to pass into the function for replacing the variables of the model such as n_subbands , dropout_rate , f1_average , data_format , shuffle , metrics , monitor , mode , save_best_only , save_weight_only , seed , and class_balancing | - |
Build method
Build the model that group layers into an object with training and inference features.
SpectralSpatialCNN.build()
Returns: Model (tf.keras.Model
): Model object
Fit method
Fit the model according to the given training and validation data. This method was implemented based on tf.keras.Model.fit(). The model weights
and logs
will save at 'log_path'
.
SpectralSpatialCNN.fit(X_train,
y_train,
X_val,
y_val)
Arguments:
Arguments | Description |
---|---|
X_train | ndarray Training EEG signals. shape (#trial, #n_subbands, #height, #width, #depth) |
y_train | ndarray Label of training set. shape (#trial) |
X_val | ndarray Validation EEG signals. shape (#trial, #n_subbands, #height, #width, #depth) |
y_val | ndarray Label of validation set. shape (#trial) |
Predict method
Generates output predictions & the loss value & metrics values for the model in test mode for the input samples. This medthod was implemented based on tf.keras.Model.predict() and tf.keras.Model.evaluate().
SpectralSpatialCNN.predict(X_test,
y_test)
Arguments | Description |
---|---|
X_test | ndarray Testing EEG signals. shape (#trial, #n_subbands, #height, #width, #depth) |
y_test | ndarray Label of test set. shape (#trial) |
Returns:
- Y: dictionary of
{y_true, y_pred}
- evaluation: dictionary of
{loss, accuracy, f1_score}
Example
from min2net.model import SpectralSpatialCNN
import numpy as np
model = SpectralSpatialCNN(input_shape=(28, 28, 1), num_class=2, dropout_rate=0.25, shuffle=True)
model.fit(X_train, y_train, X_val, y_val)
Y, evaluation = model.predict(X_test, y_test)